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This paper investigates the problem of deploying a network of

passive sensors to estimate the positions of an unknown number

of stationary transient emitters. Since a completely connected net-

work, which has a link between every pair of nodes, is not feasi-

ble because of the power and bandwidth constraints, we developed

a distributed algorithm that relies only on local communications

between neighboring sensors. This distributed algorithm requires

information diffusion within the network with the goal that every

node achieves all target location estimates as accurate as a fusion

center with centralized access to all information. The locations of

the emitters are not completely observable by any single sensor since

bearings and times of arrival with origin uncertainty are the only

available measurements. These measurements are modeled as a re-

alization of a Poisson point process at each sensor. The problem is

formulated as a constrained optimization problem, which is solved

via an alternating direction method of multipliers in a distributed

manner based on the expectation maximization and averaging con-

sensus algorithms. Consensus on the number of candidate targets

as well as the inter-node estimate association are addressed so that

the distributed algorithm converges to the maximum likelihood es-

timate. A likelihood function based approach using the estimated

probability of detection is presented to determine the number of

targets. Simulation results show that the distributed algorithm con-

verges very fast and the root mean square error of target locations

is almost as small as that obtained using the centralized algorithm.

It is also shown that one can accurately determine the number of

targets using the estimated probability of detection.
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1. INTRODUCTION

1.1. Background

This paper considers the problem of multiple tran-

sient emitter (target) localization using a wireless sensor

network (WSN). One particular application is to utilize a

network of acoustic gunfire detection systems mounted

on a group of soldiers to localize adversaries in a bat-

tlefield [16][17]. It is assumed that the targets are sta-

tionary during the time window of interest but the num-

ber of the targets is unknown. The sensors can measure

the line of sight (LOS) angles to the targets by detect-

ing their emitted acoustic signals and record the times

of arrival (TOAs) of the detected signals. This implies

incomplete target location observability for any single

sensor. Missed detections and false alarms are present

due to the imperfection of the sensors. Furthermore, the

associations between the measurements and the targets

are unknown, that is, each sensor does not know from

which target (or clutter) a particular measurement orig-

inates. Before estimating the position of any target, one

has to associate the measurements from all the sensors.

Therefore, the quality of data association is critical to

the overall localization performance.

Two different fusion algorithms developed in our

previous work [13] solved this problem using a cen-

tralized approach, i.e., we assumed that there is a fu-

sion center collecting all the information from individ-

ual sensors either directly or by multi-hop relay, typi-

cally by wireless communication. Centralized access to

all information can be difficult. For example, it requires

a high transmission power to deliver the information

from a single sensor directly to a fusion center in ap-

plications covering a large area. Moreover, the fusion

center based approach is not robust, i.e., if the fusion

center fails, the whole system fails. This has motivated

a lot of work on distributed fusion or distributed opti-

mization algorithms including the one presented in this

paper.

One straightforward distributed solution is flood-

ing, i.e., broadcasting the actual sensor measurements

through the links in the network. In [7], a commu-

nication strategy of broadcasting new measurements

was presented to allow distributed measurement fusion,

which produces the optimal estimate at each node given

all the measurements received up to any time for a linear

dynamic system. For the localization problem consid-

ered in this paper, one has a nonlinear static system. The

flooding approach still applies, by careful bookkeeping

and a number of iterations of information exchange,

each sensor would have all the information and can act

as a fusion center to find the same global solution as

a centralized approach. This method requires a large

amount of data communication, storage memory, and

bookkeeping overhead. For instance, it requires about

S (the number of sensors) times the memory storage of

the average consensus (AC) based approach.
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TABLE I

Classification of the various versions of the shooter localization

problem.

Single

target

Multiple

targets

No missed detections or false alarms P1 P5

Only missed detections exist P2 P6

Only false alarms exist P3 P7

Missed detections and false alarms exist P4 P8

When it is used for the localization problem, the

flooding approach is distributed in the sense that the

information (all the measurements) is communicated in

a distributed manner but it is centralized in the sense

that the estimation algorithm including all computations

is applied on all the information collected at every

node, i.e., the flooding approach is a multiple replica

of the centralized approach. In this paper, we present

a consensus based algorithm that is different from the

flooding approach and is distributed in the sense that

both communication and estimation are performed in a

distributed manner.

One of our approaches in [13] formulated the local-

ization problem as an optimization problem and solved

it using the expectation maximization (EM) algorithm.

We observe that two types of subproblem are solved

in the EM algorithm. One is to compute the average

of variables with one variable from one sensor and the

other is to solve a nonlinear least squares problem. Both

subproblems can be formulated to optimize a global

objective function, which can be written as a sum of

local objective functions. Such problems can be solved

using distributed optimization approaches whose goal

is to recover the optimal global solution without any

global coordination or interactions (like using a fusion

center). Their solutions often contain a step where the

sum or average of some quantity needs to be calculated

and this can be achieved by an average consensus (AC)

based approach.

The average consensus based approach with com-

munication only between the one-hop neighbors scales

well in that the communication overhead per sensor can

be kept at an affordable level as the size of the network

increases. Unlike the full flooding approach, which re-

quires the local variables labeled with their origins, the

average consensus approach does not need such la-

bels and therefore uses less storage. If new nodes join

the network, our consensus based distributed algorithm

does not need to restart the whole process because the

local variables can be updated following a (mini) flood-

ing of only the new information.

In this paper, we assume that centralized access of

all the information is not possible and we are interested

in solving the problem of multiple transient emitter lo-

calization using an alternative algorithm that is different

from the flooding approach and that is distributed in the

sense that both communication and estimation are per-

formed in a distributed manner. Since the goal is to have

each sensor obtain a global estimate (which is a vector

consisting of the number of targets and the position es-

timates of all targets) as good (or almost as good) as

can be obtained by a fusion center using a centralized

algorithm, information diffusion either in the form of

raw measurements or in the form of some intermediate

estimates (a function of raw measurements) within the

network is necessary. Instead of using the raw measure-

ment diffusion approach as in the flooding approach, we

diffuse the intermediate estimates using the average con-

sensus approach, i.e., the estimation is also performed

in a distributed manner.

Without a fully connected network (each node can

reach each other node via one or multiple “hops”), send-

ing raw measurements to all nodes in order to achieve

global optimal solution is a difficult task which re-

quires “subnetwork” coordination, which is beyond the

scope of this paper (multiple layers would be neces-

sary). Therefore, we assume that the network is fully

connected, i.e., there is a (not necessarily direct) path

between every two sensors. If the network is not con-

nected and has more than one connected subnetwork

due to node or link failures, each subnetwork can be

processed by our distributed algorithm independently.

In such case, the consensus is achieved within each con-

nected subnetwork.

Table I presents a classification of the various ver-

sions of the shooter localization problem. In view of

the above discussion, it is necessary to develop a dis-

tributed algorithm to solve the problem P8 in Table I

relying solely on local communications between one-

hop neighboring sensors. Problems P3, P4, P6 and P7

are special cases of P8, therefore can be solved by the

same distributed algorithm. Problem P1 is addressed in

Section 2.7. Problems P2 are P5 are special extensions

of P1 and will not be covered here.

1.2. Related Work

Distributed data fusion strategies, such as methods in

[6], [8], [9], [10], [14], and [21] among others, are avail-

able for joint state estimation and data association in

multi-sensor multi-target tracking scenarios. Since they

are recursive algorithms that require sequential mea-

surements and provide solutions to dynamic data associ-

ation problems, they cannot be employed to solve joint

parameter estimation and data association in a multi-

sensor multi-target localization scenario (with incom-

plete observability at each sensor) considered in this

paper. While most of the distributed estimation work

in the literature assumes linear measurement models,

our paper deals with nonlinear and incomplete target

location measurements (direction of arrival and delayed

arrival time). Although, one could imagine linearizing

the localization problem and sharing messages between

the nodes, we suspect that the linearization will probably
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cause more errors than the distributed ADMM and will

investigate this in our future work. Related work from

robotics can be found in [19]. A recent comparison of

optimal distributed estimation and consensus filtering

for dynamic systems was done in [7].

A multi-dimensional assignment formulation assum-

ing a Bernoulli measurement generation model that the

number of measurements from each target received at

each sensor is a Bernoulli random variable with pa-

rameter equal to the probability of detection as well

as a cardinality selection formulation assuming a Pois-

son measurement generation model that the number of

measurements from each target received at each sen-

sor is a Poisson random variable with parameter equal

to the probability of detection were considered in the

centralized fusion algorithms [13] to solve the same

problem of multiple transient emitter localization. This

paper only considers developing a distributed algorithm

to solve the cardinality selection problem assuming a

Poisson measurement generation model1 and leaves dis-

tributed multi-dimensional assignment algorithms for

future work. While a list of measurements at each sensor

was modeled as either realizations of a random variable

with a mixture density or a Poisson point process (PPP)

in [13], only PPP modeling is considered in this pa-

per due to its simpler mathematical solution expression.

Since the centralized algorithm solving the cardinality

selection problem, which combines expectation maxi-

mization (EM) algorithm to estimating target parameters

given a fixed number of targets and information crite-

rion for selection of the best possible number of targets,

is not amendable to a distributed implementation, it is

necessary to develop a distributed EM algorithm.

Distributed EM algorithms have attracted a lot of

attentions in sensor network applications for density es-

timation, data clustering and target tracking. For a fixed

number of target, the localization problem can be con-

sidered as a density estimation problem. An incremental

distributed EM algorithm presented in [23] is the first

known scheme for density estimation and clustering in

distributed sensor network. A distributed EM algorithm

based on the averaging consensus filtering was devel-

oped in [18] for particle filter based target tracking. A

distributed EM algorithm based on alternating direc-

tion method of multipliers (ADMM) was proposed in

[15] for distributed data clustering. However, all these

works assumes a linear generative model for their re-
spective applications, which does not apply to a non-
linear generative model (see the measurement model
in (78)) considered here due to the incomplete posi-

1The Bernoulli measurement generation model is more realistic than

the Poisson measurement generation model. Therefore, the Bernoulli

model is used to generate the synthetic data for the evaluation of the

developed algorithm, whereas the Poisson model is assumed in the

derivation of the developed algorithm. Using the Bernoulli model in

the algorithm would make it excessively complicated because of the

need to use multidimensional assignment.

tion measurement based on bearings and TOAs in the

emitter localization scenario considered in this paper.

Moreover, the parameters in these distributed EM algo-

rithms are initialized to be either fixed values (zeros) or

random values. This initialization approach was shown

to be useless for our centralized EM algorithm, which

requires an initialization based on the sequential m-best

2-D assignment algorithm applied on the lists of mea-

surements from all sensors for the convergence to the

global maximum.

1.3. Contributions

In this paper, we develop a distributed EM algorithm

to solve the same problem as considered in [13] but in

a distributed manner. The distributed processing intro-

duces a number of challenges.

Firstly, the convergence of an EM algorithm

(whether being centralized or distributed) depends

highly on the initialization step. Previous studies on

developing distributed EM algorithms assumed a lin-

ear measurement model and thus the initialization with

fixed values (such as zeros) or random values, which is

commonly used, works fine. This initialization does not

work in the problem considered in this paper where the

measurements (incomplete position observations) are

nonlinear functions of target locations. Our earlier work

shows that the assignment based initialization leads to

global convergence. However, due to limited connec-

tions in a distributed setting, each sensor can only ob-

tain a different EM initialization, which is a set of vec-

tors, using the sequential m-best 2-D assignment algo-

rithm on the measurement lists of its own and its neigh-

bors (a subset of all the lists of measurements). For the

global convergence of the EM algorithm, we developed

a distributed set consensus algorithm ensuring that ev-

ery node has the same initialization (the same number

of targets and the same target locations).

Secondly, the maximization step in the standard EM

algorithm has to be evaluated in a distributed manner.

Although the probability of detection can be estimated

by a distributed averaging consensus subroutine and the

locations of the targets can be estimated by a distributed

ADMM subroutine, this would result in a nested itera-

tive algorithm with two subroutines being iterative al-

gorithms themselves. Even more challenging, these two

subroutines are needed for a number of iterations and

at each iteration both of them requires local communi-

cations between sensors for a number of times, which

would result in a very high communication cost. In-

stead, we manage to formulate a constrained optimiza-

tion problem with equality conditions that force all local

variables to be identical and developed a new distributed

ADMM algorithm enabling a lower communication cost

at the expense of additional local computation. The EM

and AC based distributed ADMM algorithm is a gen-

eralization of previous distributed algorithms allowing
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the handling of the nonlinear and incomplete measure-

ment models such as bearings in the passive sensing

applications as here.

Last but not least, since we feel that a Bernoulli

measurement generation model is a more realistic as-

sumption and it reflects best the physical process of

measurement generation, we used a likelihood function

based thresholding approach to determine the number

of targets.

1.4. Paper Organization

The remaining sections of this paper are organized as

follows. Section 2 presents some preliminaries required

for the development of the desired distributed algorithm.

These include (i) graph modeling, (ii) a distributed

AC algorithm for both single parameter estimation and

multiple parameter estimation, (iii) data association test

for two estimates as well as two sets of estimates, (iv) an

algorithm of alternating direction method of multipliers

and (v) a distributed nonlinear least squares algorithm,

which can solve problem P1 in Table I. Section 3

formulates the problem by modeling each measurement

set as a realization of a Poisson point process. Section

4 reviews a recently developed centralized algorithm

that uses an EM algorithm to estimate the location

and emission time parameters for a fixed number of

targets. The distributed algorithm for problem P8 is

presented in Section 5. The initialization issues of this

algorithm–how to reach the consensus on the number

of targets and how to reach the consensus on the target-

estimate association–are discussed in Sections 5.1 and

5.2, respectively. An EM and AC based distributed

ADMM algorithm is developed in Section 5.3. Section

5.4 describes a thresholding approach to distinguish

real target estimates from false target estimates using

the estimated probability of detection values. Section 6

presents and analyzes simulation results and Section 7

concludes the paper.

2. PRELIMINARIES

2.1. Graph Model

A wireless sensor network with S nodes (sensors) is

deployed to collect data and perform data association

and parameter estimation task. Every node is only able

to communicate with its neighbors. Mathematically, this

network can be modeled as a graph G = (V,E) with the
set of nodes

V = fÀ1,À2, : : : ,ÀSg (1)

and the set of edges E , where an edge (Ài,Àj) 2 E is
an unordered pair of distinct nodes, representing a two-

way communication link between Ài and Àj . The graph

G is assumed connected, meaning that there is a path
between any two nodes. The set of neighbors of node

Ài is defined as

Ni = fÀj 2 V : (Ài,Àj) 2 Eg (2)

The degree of node Ài is defined as

di = jNij (3)

where j ¢ j denotes the set cardinality. The maximum
degree of the graph G is defined as

dmax = max
i
di (4)

The Laplacian matrix L of the graph G is defined as

Lij =

8><>:
¡1 if Àj 2Ni
di if j = i

0 otherwise

(5)

2.2. Distributed Averaging Consensus Algorithm

Suppose a wireless sensor network with S nodes is

deployed to estimate an unknown constant parameter

x 2Rn. Each node Ài makes a measurement
zi = x+wi (6)

where wi are independent, identically distributed, nor-

mal, zero mean, and with a known identity covariance

matrix I. The maximum likelihood estimate of x is

(1=S)
PS

i=1 zi, which is the mean vector of all measure-

ments zi. This estimate can be obtained by the following

distributed averaging consensus algorithm.

Let us denote an initial value (zi for the estimate

problem) at node Ài by ui(0) 2Rn at time t= 0. The
matrix formed by the column vectors at all nodes is

denoted as

U(0) = [u1(0) u2(0) : : : uS(0)]
T 2RS£n (7)

The goal of distributed averaging consensus is to make

every node obtain the mean vector (1=S)
PS

i=1 ui(0)

eventually after gradually updating its value with a lin-

ear combination of its previously stored value and the

values of its neighbors. One iteration of the process can

be represented with a weight matrix W as

ui(t+1) =Wiiui(t)+
X
j2Ni

Wijuj(t) i= 1, : : : ,S (8)

where t= 0,1, : : : is the discrete time index, and Wij is

the weight on uj at node Ài. Setting Wij = 0 for j =2Ni,
this iteration can be written in matrix form as

U(t+1) =WU(t) (9)

and W is selected such that

lim
t!1U(t) =

1

S
110U(0) (10)

The best constant edge weight matrix is given by [27]

W = I¡¯L (11)

with

¯ =
2

´1(L) + ´S¡1(L)
(12)

where ´1(L) and ´S¡1(L) are the largest and second
smallest eigenvalues of L, respectively.
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In some cases, each node only has the knowledge of

its neighbors rather than the connectivity of the entire

network. It is more suitable to use the Metropolis weight

matrix, which is defined as [28]

Wij =

8>>><>>>:
1

1+maxfdi,djg
if Àj 2Ni

1¡PÀk2Ni Wik if j = i

0 otherwise

(13)

2.3. Distributed Averaging Consensus Algorithm for
Multiple Parameter Estimation with Unknown
Data Association

Suppose a WSN with S nodes is used to estimate a

set of N unknown constant parameters

X = fx1,x2, : : : ,xNg (14)

with each xj 2Rn. Each node Ài has a set of N mea-

surements
Zi = fzi1,zi2, : : : ,ziNg (15)

with one for each xj . Let ¦N denote all permutations of

the set f1,2, : : : ,Ng, then the jth measurement of node
Ài is

zij = x¼i(j) +wi (16)

where ¼i 2¦N is a permutation2 at node Ài, and wi are
independent, identically distributed, normal, zero mean

measurement noises with a known identity covariance

matrix I.

Since the second index j of zij in the set Zi contains

no labeling information, one needs to perform data as-

sociation and weighted averaging update (8) simultane-

ously for multiple parameter estimation. Let us denote

the stacked vector at node Ài at time t as

ui(t) = [u
T
i1(t),u

T
i2(t), : : : ,u

T
iN(t)]

T (17)

and uij(0) is initialized as zij . At time t, node Ài calcu-

lates an optimal permutation3 ¼ji for each of its neighbor

nodes Àj as

¼ji = arg min
¼2¦N

NX
k=1

kuik(t)¡uj¼(k)(t)k2 (18)

Then node Ài updates each segment of its stacked vector

(17) as

uik(t+1) =Wiiuik(t) +
X
j2Ni

Wijuj¼ji(k)(t) (19)

where the index ¼ji(k) refers to the segment of the

stacked vector at node Àj that associates with the kth

segment of the stacked vector at node Ài according to

the permutation ¼ji (18), and the weight matrix is given

by (13).

2It is a one-to-one mapping function from an ordered set f1,2, : : : ,Ng
to a particular permutation of this set.
3The second index i of ¼ji indicates that the optimal permutation is

obtained with respect to ui(t).

2.4. Association Test for Two Estimates

Suppose that sensor Ài has an unbiased estimate

x̂i of the n-dimensional (unknown) parameter xi with

a covariance matrix Pi and sensor Àj has an unbiased

estimate x̂j of the n-dimensional (unknown) parameter

xj with a covariance matrix Pj . We are interested in

testing whether xi = xj . Let us denote the difference of

the two estimates as

¢̂ij = x̂i¡ x̂j (20)

which is the estimate of the difference of the parameters

¢ij = xi¡ xj (21)

Since the estimation errors

x̃i = xi¡ x̂i (22)

x̃j = xj ¡ x̂j (23)

are zero-mean, the estimation error of the difference of

the parameters

¢̃ij =¢ij ¡ ¢̂ij = x̃i¡ x̃j (24)

is also zero-mean and it has the covariance matrix

Tij = Ef¢̃ij¢̃Tijg= Ef(x̃i¡ x̃j)(x̃i¡ x̃j)Tg
= Pi+Pj ¡Efx̃ix̃Tj g¡Efx̃j x̃Ti g (25)

If x̃i and x̃j are independent, then we have

Tij = Pi+Pj (26)

Assuming that x̃i and x̃j are Gaussian, the normalized

estimation error squared (NEES) [2] for ¢

²ij
¢
=¢̃TijT

¡1
ij ¢̃ij (27)

is chi-square distributed with n degrees of freedom.

The null hypothesis that the two parameters are the

same and the alternative hypothesis are

H0 :¢= 0 (28)

H1 :¢ 6= 0 (29)

Under H0 (¢= 0), we have the following

¢̃ij =¡¢̂ij (30)

²ij = ¢̂
T
ijT

¡1
ij ¢̂ij (31)

Therefore, the test of H0 vs. H1 is as follows. If

¢̂TijT
¡1
ij ¢̂ij · F¡1Â2n (1¡®) (32)

where F¡1
Â2n
(¢) is the inverse of the cumulative distribu-

tion function (cdf) of a chi-square random variable with

n degrees of freedom, we will not reject H0 at a signif-

icance level of ®. Then it is likely that x̂i and x̂j are

estimates of the same parameter.
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2.5. Association Test for Two Sets of Estimates

Suppose that there are N unknown n-dimensional

constant parameters

X = fx1,x2, : : : ,xNg (33)

Sensor Ài has a set of Ni estimates with corresponding

covariance matrices

x̂i = fx̂i1, x̂i2, : : : , x̂iNig (34)

Pi = fPi1,Pi2, : : : ,PiNig (35)

Similarly, sensor Àj has Nj estimates with corresponding

covariance matrices

x̂j = fx̂j1, x̂j2, : : : , x̂jNjg (36)

Pj = fPj1,Pj2, : : : ,PjNjg (37)

We assume that each sensor has at most one estimate

for a particular parameter and the estimation errors are

independent.

If x̂ik and x̂j` are estimates of the same parameter,

then the NEES

dk` = (x̂ik ¡ x̂j`)T(Pik +Pj`)¡1(x̂ik ¡ x̂j`) (38)

can be regarded as a distance measure between x̂ik and

x̂j`. A small value of dk` indicates a high probability of

both being the estimates of the same parameter.

To deal with incomplete associations caused by

missed detections, we add dummy estimates x̂i0 and x̂j0
to the sets x̂i and x̂j , respectively [24]. The distance

involving a dummy estimate is defined as

dk0 = d0` = F
¡1
Â2n
(1¡®) (39)

for a small value (say, 0.01) of ®.

To associate the estimates in set x̂i with those in set

x̂j , we solve a generalized 2-D assignment problem

min
½k`

NiX
k=0

NjX
`=0

½k`dk` (40)

subject to

NjX
`=0

½k` = 1 8 k = 1,2, : : : ,Ni (41)

NiX
k=0

½k` = 1 8 `= 1,2, : : : ,Nj (42)

½k` 2 f0,1g k = 0,1, : : : ,Ni; `= 0,1, : : : ,Nj (43)

The modified auction algorithm [24] can be applied to

the above problem.

The association results of x̂ik are determined as

follows.

If
½k0 = 1 (44)

then x̂ik is assigned to the dummy estimate x̂j0, that is,

the probability that no estimate in x̂j comes from the

same parameter as x̂ik is 0.99 for ®= 0:01. In this case,

x̂ik is not associated.

If

½k` = 1 (45)

then x̂ik is associated with x̂j`.

The association results of x̂j` are determined in a

similar way.

2.6. The Alternating Direction Method of Multipliers
(ADMM) Algorithm

Consider the following equality-constrained opti-

mization problem

min
z,y
ff(z)+ g(y)g (46)

subject to

Az+By = c (47)

with variables z 2Rp and y 2Rq, where A 2Rm£p, B 2
Rm£q and c 2Rm are given.
The augmented Lagrangian of (46) is defined as

L½(z,y,¸) = f(z) + g(y) +¸
T(Az+By¡ c)

+
½

2
kAz+By¡ ck22 (48)

where ¸ is the dual variable or Lagrange multiplier and

½ > 0 is the penalty parameter.

The ADMM algorithm [5] solves (46) by iterating

the following 3 steps

zk+1
¢
=argmin

z
L½(z,y

k,¸k) z-minimization (49)

yk+1
¢
=argmin

y
L½(z

k+1,y,¸k) y-minimization (50)

¸k+1
¢
=¸k + ½(Azk+1 +Byk+1¡ c) dual update (51)

where ½ is used as the step size for the dual update and

the superscript is the iteration counter.

In the ADMM, the variables z and y are updated

in an alternating or sequential fashion instead of being

minimized jointly, which accounts for the term alternat-
ing direction. Separating the minimization over z and y
into two steps is precisely what allows for decomposi-

tion when f (or g) is separable with respect to a partition

of the variable z (or y) into subvectors.

2.7. Distributed Nonlinear Least Squares Algorithm

This subsection presents a distributed solution to the

problem P1 in Table I. We are interested in localizing

a single target using the network G without missed

detections or false alarms. Suppose each node Ài has a

scalar measurement ai from the target, we need to solve

the unconstrained optimization problem

min
x

SX
i=1

(h(x)¡ ai)2 (52)
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TABLE II

Averaging consensus based distributed ADMM algorithm.

1: Node Ài initializes x
1
i
and ¸1

i
= 0

2: Compute x̄1 =
1

S

PS

i=1
x1
i
via a distributed averaging consensus

algorithm

3: for k = 1,2, : : : do until convergence

4: for all Ài do

5: Compute xk+1
i

via (71)

6: Compute x̄k+1 =
1

S

PS

i=1
xk+1
i

via a distributed

averaging consensus algorithm

7: Compute ¸k+1
i

via (72)

8: end for

9: end for

where x 2R2 is the parameter to be estimated (or the
variable for the minimization), h(¢) is a nonlinear func-
tion of x (for instance, h(x) is an arctan function in a

bearing-only localization problem) and S is the number

of sensors.

Consider the constrained optimization problem,

which is equivalent to (52)

min
x1,x2,:::,xS

SX
i=1

(h(xi)¡ ai)2 (53)

subject to

x1 = x2 = : : := xS = w (54)

We can put (54) in the form of (47) by setting

z = [xT1 xT2 : : :x
T
S ]
T (55)

y = w (56)

f(z) =

SX
i=1

(h(xi)¡ ai)2 (57)

g(y) = 0 (58)

A= I2S (59)

B = [¡I2 ¡ I2 ¢ ¢ ¢ ¡ I2]T 2R2S£2 (60)

c= 0 (61)

Therefore, the augmented Lagrangian is

L½(x1,x2, : : : ,xS ,w,¸) =

SX
i=1

h
(h(xi)¡ ai)2 +¸Ti (xi¡w) +

½

2
kxi¡wk22

i
(62)

where

¸= [¸T1 ¸
T
2 : : :¸

T
S ]
T (63)

The z-minimization step (49) is

(xk+11 ,xk+12 , : : : ,xk+1S ) =

arg min
x1,x2,:::,xS

L½(x1,x2, : : : ,xS,w
k,¸k) (64)

which can be carried out in a distributed fashion as

xk+1i = argmin
xi
(h(xi)¡ ai)2 +¸kTi (xi¡wk)

+
½

2
kxi¡wkk22 i= 1,2, : : : ,S (65)

The y-minimization step (50) is

wk+1 = argmin
w
L½(x

k+1
1 ,xk+12 , : : : ,xk+1S ,w,¸k)

= argmin
w

SX
i=1

h
¸kTi (x

k+1
i ¡w) + ½

2
kxk+1i ¡wk22

i

=
1

S

SX
i=1

xk+1i +
1

S½

SX
i=1

¸ki (66)

The dual update step (51) is

¸k+1i = ¸ki + ½(x
k+1
i ¡wk+1) i= 1,2, : : : ,S (67)

If we carry out the summation of (67) over i and

substitute wk+1 from (66), then

SX
i=1

¸k+1i =

SX
i=1

¸ki + ½

SX
i=1

xk+1i ¡ S½wk+1 = 0 k 6= 0
(68)

which means that the dual variables have average value

zero after the first iteration. If the dual variables are

initialized such that

SX
i=1

¸1i = 0 (69)

then, the y-minimization step simplifies to

wk+1 =
1

S

SX
i=1

xk+1i

¢
= x̄k+1 (70)

The simplified ADMM steps, in a distributed form,

become

xk+1i

¢
=argmin

xi
[h(xi)¡ ai]2 +¸kTi (xi¡ x̄k)

+
½

2
kxi¡ x̄kk22 i= 1,2, : : : ,S (71)

¸k+1i

¢
=¸ki + ½(x

k+1
i ¡ x̄k+1) i= 1,2, : : : ,S (72)

Based on the above ADMM steps, we obtain an av-

eraging consensus based distributed algorithm as shown

in Table II. Each node Ài stores and updates two vectors

xi and ¸i. At iteration k = 1, each node initializes a local

parameter estimate x1i and obtains x̄
1 via a distributed

averaging consensus algorithm as discussed in Section

2.2. The dual variables ¸1i = 0 are also initialized. Dur-

ing the kth iteration, each node updates its local parame-

ter estimate xk+1i using (71). Next, each node reaches the

consensus on x̄k+1, and subsequently, updates its local

dual variable ¸k+1i using (72), which concludes the kth

iteration.
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Reformulations of (52) other than (53) include [26]

and [22], which result in a bridge-sensor based dis-

tributed ADMM and a coloring-scheme based dis-

tributed ADMM, respectively. However, either prior as-

signment of bridge sensors [26] or colors [22] is re-

quired for the respective algorithm to function properly.

However, in these versions it is difficult to make a new

assignment in case of node or link failures. Whereas,

the averaging consensus based distributed ADMM al-

gorithm does not require any feature assignment to in-

dividual nodes since it relies solely on information dif-

fusion across the network.

3. PROBLEM STATEMENT AND FORMULATION

3.1. Problem Statement

Consider a scenario where there are N stationary

targets located in R2. The target locations are denoted as

T= (T1,T2, : : : ,TN) =

μ·
Tx1

Ty1

¸
,

·
Tx2

Ty2

¸
, : : : ,

·
TxN

TyN

¸¶
(73)

The number of targets and their locations are unknown

quantities of interest, to be estimated. A wireless sensor

network consisting of S stationary nodes is deployed at

known locations

S= (S1,S2, : : : ,SS) =

μ·
Sx1

Sy1

¸
,

·
Sx2

Sy2

¸
, : : : ,

·
SxS

SyS

¸¶
(74)

to perform this estimation task. There is one transient

event occurring at each target location. Each node is

able to observe these transient events by detecting the

acoustic signals arising from them and measure the

bearings to the targets and the TOAs of the received

acoustic signals. The acoustic signal emission times are

denoted as
te = (te1, t

e
2, : : : , t

e
N) (75)

For notational simplicity, let us denote

©= [ÁT1 ÁT2 : : :Á
T
N]
T (76)

where
Ái = [Txi Tyi tei ]

T (77)

denotes the unknown 3-dimensional parameter of ith

target.

If the transient events are separated significantly

in time, the measurements from the same event will

be close in time and the measurements from differ-

ent events will also be separated significantly in time,

and then the target locations can be estimated one at a

time using the algorithm presented in 2.7. Therefore, we

assume a more challenging situation that the transient

events are close in time. In this case, the data association

between the measurements and the targets has to be ad-

dressed before the network can fuse the measurements

from a common origin to estimate the corresponding

target location.

It is assumed that all measurements fall within a

short time window W. Let m` denote the number of

measurements (one measurement is defined as a vector

consisting of both a bearing and a TOA due to one

acoustic signal in this context) obtained by the `th

sensor within the time windowW. The jth measurement

received by the `th sensor, if it is from the ith target at

tei , is

z`j = h`(Ái) +w`j i= 1, : : : ,N;

`= 1, : : : ,S; j = 1, : : : ,m` (78)

where w`j is a zero mean white Gaussian measurement

noise with a known diagonal covariance matrix R` and

h`(Ái) =

·
μ`i

t`i

¸
=

26664
arctan

·
Tyi ¡ Sy`
Txi ¡ Sx`

¸

tei +

q
(Txi ¡ Sx`)2 + (Tyi ¡ Sy`)2

c

37775
(79)

where tei is the unknown emission time of the acoustic

signal from ith target and c is the known speed of sound.

To incorporate false alarms, we denote a clutter tar-

get (with index 0) as Á0. A false measurement detected
by the `th sensor consists of a bearing μ0, which is uni-

formly distributed in the field of view of the `th sensor,

and its arrival time t0, which is uniformly distributed

in the interval [0,W]. The number of false alarms from

each sensor is assumed to be a Poisson random variable

with mean

Nfa = ¸fa©W (80)

where © is the range of the field of view and is assumed

to be the same for each sensor and ¸fa can be interpreted

as the spatial-temporal density.

The likelihood function [2] of the target parameter4

(location and emission time) based on the measurement

z`j is

¤(Á0;z`j)
¢
=p(z`j j Á0) = p(μ0)p(t0) =

1

©W
(81)

¤(Ái;z`j)
¢
=p(z`j j Ái) = j2¼R`j¡1=2

¢ expf¡ 1
2
[z`j ¡h`(Ái)]0R¡1` [z`j ¡h`(Ái)]g

i 6= 0 (82)

where (81) is the probability density function (pdf) of a

clutter-origin measurement (a false alarm), and (82) is

the pdf of a real measurement from a true target with

unknown Ái.
The problem is to estimate N and ©= fÁi, i=

1, : : : ,Ng (therefore knowing T= fTi, i= 1, : : : ,Ng)
given the complete set of observations Z= fz`j , `=
1, : : : ,S; j = 1, : : : ,m`g in the presence of missed detec-
tions and false alarms and without the knowledge of the

true data association.

4If the source is clutter, it has no emission time, only an arrival time.
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3.2. Poisson Point Process Measurement Modeling

Assume the number of targets, N, is given. The

number of measurements m` and fz`j ,j = 1,2, : : : ,m`g
obtained at the `th sensor is jointly modeled as a re-

alization of a Poisson Point Process (PPP) [11]. The

measurement set at the `th sensor is denoted as

Ã` = fm`,z`1,z`2, : : : ,z`m`g (83)

In this case, the points z`j occur in the space S= f(μ, t) :
μ 2©, t 2 [0,W]g and their order is irrelevant. The PPP
is fully parameterized by its spatial intensity function

¹`(z) =

NX
i=0

pdi g`i(z) (84)

where pdi is the probability of detection for the real target

i (i 6= 0) and is assumed to be the same at each sensor
and with abuse of notation

pd0 =Nfa (85)

is the expected number of false alarms at each sensor;

the density g`i(z) is the conditional
5 pdf of a measure-

ment z obtained by the `th sensor given that it is asso-
ciated with the ith target and is given by

g`i(z) =
1

©W
i= 0 (86)

g`i(z) =N (z;h`(Ái),R`) i= 1, : : : ,N (87)

For notational simplicity, we denote

pd = [pd0 pd1 : : :p
d
N]
T (88)

which is assumed to be unknown and therefore the

set of parameters to be estimated is expanded to μ =
[©T pdT]T for a given N.
The number of points in the PPP is a Poisson random

variable with mean
R
S¹`(z)dz, that is, the probability

mass function (pmf) of m` is

p(m`) =
(
R
S¹`(z)dz)

m`

m`!
exp

½
¡
Z
S
¹`(z)dz

¾

=

³PN
i=0p

d
i

´m`
m`!

exp

Ã
¡

NX
i=0

pdi

!
(89)

The m` points are defined as independent and identically

distributed (i.i.d.) samples of a random variable with

probability density function

p(z) =
¹`(z)R

S¹`(z)dz
=

PN
i=0p

d
i g`i(z)PN

i=0p
d
i

(90)

The joint pmf-pdf of Ã` from (83) is

p(Ã` j μ) = exp
Ã
¡

NX
i=0

pdi

!
mỲ
j=1

¹`(z`j j μ) (91)

5g`i(z j Ái) will be used when the conditioning needs to be explicitly
indicated.

where the conditioning (dependency) on μ will be ex-
plicitly indicated hereafter. The factorial termm`! in (89)

is canceled out because there are m`! permutations of an

ordered list of measurements. Let ª denote the set of

all measurement sets (from the S sensors), i.e.,

ª = fÃ1,Ã2, : : : ,ÃSg (92)

The conditional independence of the S measurement

sets yields

p(ª j μ) =
SY
`=1

p(Ã` j μ) (93)

Therefore, we can find the maximum likelihood esti-

mate (MLE) of μ by maximizing (93).

3.3. Data Association Modeling

Since the intensity function (84) is a mixture of uni-

form or Gaussian pdf and the association is unknown,

we model the latent association variables as condition-

ally independent random variables

·`j 2 f0,1,2, : : : ,Ng (94)

that identify which component generated z`j . Here ·`j =
0 indicates that the measurement is generated by the

clutter. The set of latent variables for the `th sensor is

denoted as
·` = f·`1, : : : ,·`m`g (95)

such that the complete set of latent variables for all

sensors is
·= f·1, : : : ,·Sg (96)

The latent association variables may be regarded as

“marks” associated with each of the points in the PPP.

If we define a mark space

M ¢
=f0,1,2, : : : ,Ng (97)

then the marked measurement set at the `th sensor

denoted by

ÃM` = fm`, (z`1,·`1), : : : , (z`m` ,·`m`)g (98)

represents a realization of the marked6 PPP for the `th

sensor on the product space S£M. It can be shown that
the intensity function of ÃM` is

¹M` (z,· j μ) = pd·g`·(z) (99)

The joint probability density function ofÃM` is, similarly
to (91), given by

p(ÃM` j μ) = exp
Ã
¡

NX
·=0

Z
S
¹M` (z,· j μ)dz

!

¢
mỲ
j=1

¹M` (z`j ,·`j j μ) (100)

6The superscript of ÃM
`
indicates that the associations are known, i.e.,

“marked.”
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TABLE III

Centralized EM algorithm.

1: Initializes μ(0)

2: for n= 1,2, : : : do until convergence

3: E step Evaluate

Q(μ j μ(n¡1)) =
X
·

p(· j Z,μ(n¡1)) lnp(ªM j μ) (106)

4: M step Evaluate μ(n) as

μ(n) = argmax
μ
Q(μ j μ(n¡1)) (107)

5: end for

Let us denote the marked measurement sets from all

sensors as

ªM = fÃM1 ,ÃM2 , : : : ,ÃMS g (101)

The conditional independence of these S marked mea-

surement sets yields the pmf-pdf for ªM as

p(ªM j μ) = exp
Ã
¡S

NX
i=0

pdi

!
SY
`=1

mỲ
j=1

pd·`j g`·`j (z`j j μ)

(102)

where we have used the fact

NX
·=0

μZ
S
pd·g`·(z j T,te)dz

¶
=

NX
i=0

pdi (103)

Dividing (102) by (93) leads to the density of the

marks conditioned on the observed measurements and

the unknown parameters

p(· j Z,μ) =
SY
`=1

mỲ
j=1

p`(·`j j z`j ,μ) (104)

where

p`(·`j j z`j ,μ) =
pd·`j g`·`j (z`j j μ)
¹`(z`j j μ)

(105)

4. CENTRALIZED ALGORITHM

4.1. Centralized EM Algorithm

Given the joint distribution p(ªM j μ) over observed
ª and latent variables ·, governed by the parameter μ,
the maximum likelihood estimate μ̂ of μ from the like-

lihood function p(ª j μ) can be found by the standard
(named as centralized hereafter) EM algorithm [12] as

shown in Table III.

Evaluation of the E step decomposes into two terms

Q(μ j μ(n¡1)) =Qp+QÁ (108)

where

Qp =Q(p
d j μ(n¡1)) =¡S

NX
i=0

pdi

+

SX
`=1

mX̀
j=1

NX
i=0

ln(pdi )®
(n¡1)
`ji (109)

QÁ =Q(© j μ(n¡1)) =
SX
`=1

mX̀
j=1

NX
i=0

ln(g`i(z`j j Ái))®(n¡1)`ji

(110)

where

®(n¡1)`ji = p`(·`j = i j z`j ,μ(n¡1))

=
pd(n¡1)i g`i(z`j j Á(n¡1)i )PN
i=0p

d(n¡1)
i g`i(z`j j Á(n¡1)i )

(111)

The M step involves two separate maximizations with

respect to pd and ©. From the Karush-Kuhn-Tucker

(KKT) conditions [20], we have

pd(n)i =

8><>:
1

S

PS
`=1

Pm`
j=1®

(n¡1)
`j0 if i= 0

min

½
1,
1

S

PS
`=1

Pm`
j=1®

(n¡1)
`ji

¾
if i 6= 0

(112)

Since QÁ in (110) can be further decomposed into N+1

terms, the parameters of each target can be estimated

independently as

Á(n)i = argmax
Ái

SX
`=1

mX̀
j=1

ln(g`i(z`j j Ái))®(n¡1)`ji (113)

5. DISTRIBUTED ALGORITHM

Note that it is possible to have a distributed imple-

mentation of the centralized EM algorithm if (i) every

node has the consensus on the initialization and (ii) ev-

ery node has the consensus on the parameter estimates

at the end of each M step. The second condition can

readily be satisfied if an averaging consensus based dis-

tributed ADMM is applied to solve (113), which is a

nonlinear least squares problem, and a distributed av-

eraging consensus algorithm is applied to obtain (112).

However, it is not trivial to have the same initialization

for μ = [©T pdT]T among all sensors, especially for the
component ©. Simulation results show that it is good

enough to initialize each pdi to be 1. Whereas, equal ini-

tialization at some pre-fixed values (for instance, zero

vectors) for © could result in the convergence of the

EM algorithm to estimates that are very different from

the desired MLE.

There are two possible initialization approaches in

a single target localization scenario. Assume that the

data association is known and no missed detections or

false alarms occur, we want to localize a single target

using the algorithm in Table II. The first approach is

to initialize the target location at each node using only

its bearing measurement. The average distance from the

wireless sensor network to the target is assumed to be

D. Given a range R (probably unknown in a real sce-

nario), each node initializes the target location along the

measured line of sight in the direction towards the target

randomly with a distance (between the initialized target

location and the node itself) being uniformly distributed
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TABLE IV

RMSE using different initializations for distributed localization of a

single target.

Centralized Intersection

Random

R = 30

Random

R = 60

RMSE (m) 1.7036 1.7733 3.2988 5.2915

in [D-0.5R, D+0.5R]. The second approach is to obtain

the LOS information (bearing and sensor location) from

one of its neighbors and use the intersection of two lines

of sight as the initial target location estimate.

Table IV lists the root mean square error (RMSE)

of the target location (averaged over 100 Monte-Carlo

runs) using different initialization approaches to localize

a single target at the location (8:7 m, 99:6 m) in a sce-

nario given in Section 6. It shows that the performance

of the distributed algorithm with LOS intersection ini-

tialization is almost as good as the centralized algorithm,

which assumes all bearing measurements available at a

fusion center and also uses intersection initialization.

With a random initialization based on some knowledge,

which is likely unavailable, the distributed algorithm

converges to local minimum point of (53) with h(x) be-

ing an arctan function.

For a multiple target localization scenario with un-

known data association, the random initialization ap-

proach will be worse. Therefore, in a similar way as

what we did at the fusion center in a centralized fusion

algorithm, each node obtains an initial position estimate

for each target that is very close to the final MLE, by

associating its local measurements with those from its

neighbors using the sequential m-best 2-D assignment

algorithm [1]. Another important reason that we choose

the sequential m-best 2-D algorithm over the random

initialization approach is that the position estimates ob-

tained are completely observable with corresponding

covariance matrices, which allows the use of the as-

sociation method described in Section 2.5 to reach the

consensus on the initialization.

If the probability of detection is low or the false

alarm rate is high, then it is possible that the initial

estimated numbers of targets at various nodes are dif-

ferent. Some nodes could have estimated more targets

than there actually are due to false alarms, whereas other

nodes could have estimated less due to missed detec-

tions. Section 5.1 discusses how to reach the consensus

on the number of candidate targets7 among all nodes.

Section 5.2 assumes that each node has an initial

set consisting of the same number of target estimates

which correspond to the same group of candidate tar-

gets, and discusses how to reach the consensus on on

target-estimate association, that is, for a given ordered

set of candidate targets, each node should know the as-

sociation between its estimates and the targets. Note that

7The concept of candidate target is discussed in detail in Section 5.1.

the initial estimated value of parameter © could still be
different from node to node. However, the consensus on

target-estimate association requires all the nodes have

exactly the same set of target estimates.

In Section 5.3, we develop a distributed algorithm

that assumes all the nodes have the same set of target

estimates. The consensus on target-estimate association

is required for convergence of the algorithm.

5.1. Consensus on the Number of Targets

If the probability of detection is low or the false

alarm rate is high, then it is possible that the initial es-

timated numbers of targets at various nodes are differ-

ent. Some nodes could have estimated more targets than

there should be, whereas other nodes could have esti-

mated less. In this subsection, we extend the problem

solved in Section 2.3 to the case when missed detections

and/or false alarms exist and develop a distributed set

averaging consensus algorithm to expand some or all

sets so that we end up with sets of estimates for the

same number of candidate (real or false) targets. Each

sensor gradually modifies its own set by performing the

association test presented in Section 2.5 with the sets of

its neighbors.

Let us denote the initial set of estimates with corre-

sponding covariance matrices at node Ài as

©̂i = fÁ̂i1, Á̂i2, : : : ,Á̂iNig (114)

Qi = fQi1,Qi2, : : : ,QiNig (115)

where each Á̂ik corresponds to one candidate target
and the number of candidate targets Ni is probably

distinct for different nodes Ài. Assume that there are

Nc candidate targets with parameters

©c = fÁ1,Á2, : : : ,ÁNcg (116)

of which only N parameters correspond to real targets

and the remaining Nc¡N parameters correspond to

false targets. The number Nc will only be known at the

end of the algorithm. For any target parameter in ©c,

there is at most one estimate Á̂ik at node Ài.
Figure 1 illustrates the concept of candidate target.

In this example, both sensors have detected true tar-

gets at coordinates (10 m, 10 m) and (20 m, 20 m),

therefore each of these is a candidate target. Sensors

1 and 2 each also have an additional estimated target

around (31 m, 31 m) and (29 m, 11 m), respectively.

In this case, we assume that these two estimates fail to

be associated. Therefore, two additional targets, which

are assumed to be at coordinates (30 m, 30 m) and

(30 m, 10 m), are also candidate targets.

Referring back to the same context in Section 2.5,

the sets ©c and ©̂i defined in (116) and (114) play the
same roles as X and x̂i in (33) and (34), respectively. The

independent estimation error assumption is valid only

when two estimates have no common source of error

[3]. In the case that two neighboring nodes each have

DISTRIBUTED FUSION ALGORITHM FOR PASSIVE LOCALIZATION OF MULTIPLE TRANSIENT EMITTERS 23



Fig. 1. An illustrative example: each sensor has three estimates,

there are four candidate targets.

one estimate for the same target, it is quite likely that

these two estimates are obtained using some common

measurements and therefore they have correlated errors.

Since it is difficult to calculate the cross covariance, we

will use (26) as an approximation. This approximation

only applies to true target location estimates that are

supposed to be associated, and will not affect the deci-

sions involving estimates that belong to false targets. In

our approach, the independence assumption (of the er-

rors in the estimated target locations at different sensors)

is used only to build the consensus. We do not “fuse”

the corresponding covariances, which pertain to errors

that are dependent; fusing them under independence as-

sumption would indeed be optimistic and unreasonable.

One iteration of the distributed set averaging consen-

sus algorithm is described next. At iteration t, node Ài
expands ©̂i(t) sequentially with each neighboring node

Àj 2Ni.
Firstly, for a given significance level ®, the following

generalized 2-D assignment problem

min
½k`

NiX
k=0

NjX
`=0

½k`dk`(t) (117)

subject to

NjX
`=0

½k` = 1 for all k = 1,2, : : : ,Ni (118)

NiX
k=0

½k` = 1 for all `= 1,2, : : : ,Nj (119)

½k` 2 f0,1g for all k = 0,1, : : : ,Ni and `= 0,1, : : : ,Nj
(120)

where, similarly as in (38) and (39), with the addition

of a dummy estimate Á̂i0 at each node Ài, the distance
between two estimates are defined as

dk`(t) =

8>><>>:
(Á̂ik(t)¡ Á̂j`(t))T(Pik(t)+Pj`(t))¡1

¢(Á̂ik(t)¡ Á̂j`(t)) if k > 0 and ` > 0

F¡1
Â2n
(1¡®) if k = 0 or `= 0

(121)

Next, ©̂i(t) could be expanded based on the solution
½k` to the assignment problem. If

½0` = 1 (122)

which means that the estimate Á̂j`(t) is not associated

with any estimate at node Ài, then ©̂i(t) is expanded to

©̂i(t)[fÁ̂j`(t)g. If there are multiple estimates that are
not associated, then they are all used to expand ©̂i(t).
The algorithm terminates when every node set has

the same number of estimates and no set can be ex-

panded further.

Note that if a sensor does not have a position es-

timate for target i, it will “copy” a position estimate

for target i from one of its neighbors. If a sensor has a

position estimate for a false target, then all its neighbors

need to “copy” this estimate so that every sensor has a

position estimate for the same false target. Since the to-

tal number of target estimates across all the sensors is a

finite number
PS
i=1Ni, where S is the number of sensors,

and each iteration expands at least one set, the algorithm

will be terminated in a finite number of iterations.

5.2. Consensus on the Target-Estimate Association

Suppose that the initial sets of target estimates, either

obtained directly via the assignment algorithm across all

nodes or by means of the method described in Section

5.1, have the same number of target estimates.

The local variable of μ` has components ©` and p
d
` .

We initialize pd` as a vector of ones. The component

©` = [Á
T
`1 Á

T
`2 : : :Á

T
`N]

T will be initialized using the set

obtained via the sequential assignment algorithm de-

noted by

©` = f'`1,'`2, : : : ,'`Ng (123)

There are N! ways of initialization for node `. We want

to find a permutation for each set ©`

¼`(©`) = f'`¼`(1),'`¼`(2), : : : ,'`¼`(N)g (124)

such that for any k = 1,2 : : : ,N, the set of estimates

f'`¼`(k), `= 1,2, : : : ,Sg, one from each sensor, corre-

sponds to the same target. For this purpose, we can

apply the algorithm in Section 2.3 on the sets ©`, `=
1, : : : ,S, and when the algorithm terminates, we have all

the sets equal.

We initialize ©` as

©` = ['
T
`¼`(1)

'T`¼`(2) : : :'
T
`¼`(N)

]T (125)
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where, letting i= ¼`(k)

'`i = [Txi Tyi tei ]
T (126)

is ordered such that

Txi · Txj , 8 i· j (127)

Tyi · Tyj , 8 i· j and Txi = Txj (128)

The use of the ordering rules (127) and (128) to label

targets makes sense only when the sets of the estimates

from all nodes are the same.

5.3. The EM and AC Based Distributed ADMM
Algorithm

The centralized EM algorithm provides a method to

solve the following optimization problem

min
μ
f¡ lnp(ª j μ)g (129)

where

lnp(ª j μ) =
SX
`=1

lnp(Ã` j μ) (130)

To develop a distributed algorithm to solve the above

problem, we consider an equivalent formulation with

equality constraints between local variables μ` and a

global variable μ

min
μ1,μ2,:::,μS

SX
`=1

¡ lnp(Ã` j μ`) (131)

subject to

μ1 = μ2 = : : := μS = μ (132)

The augmented Lagrangian is

L½(μ1,μ2, : : : ,μS ,μ,¸) =
SX
`=1

h
¡ lnp(Ã` j μ`)

+ ¸T` (μ`¡μ)+
½

2
kμ`¡μk22

i
(133)

Following the similar derivations as presented in Section

2.7, we can obtain the ADMM steps, which are in a

distributed form, as

μk+1` = argmin
z

SX
`=1

h
¡ lnp(Ã` j μ`)

+ ¸kT` (μ`¡μk) +
½

2
kμ`¡μkk22

i
(134)

μk+1 =
1

S

SX
`=1

μk+1` (135)

¸k+1` = ¸k` + ½(μ
k+1
` ¡μk+1) (136)

TABLE V

EM and averaging consensus based distributed ADMM algorithm.

1: Node À` initializes μ
1
`
by a sequential m-best 2-D assignment

algorithm and ¸1
`
= 0

2: Compute μ1 =
1

S

PS

`=1
μ1
`
by a distributed averaging consensus

algorithm

3: for k = 1,2, : : : do until convergence

4: for all À` do

5: Compute μk+1
`

via (134) by a local EM algorithm

6: Compute μk+1 =
1

S

PS

`=1
μk+1
`

by a distributed

averaging consensus algorithm

7: Compute ¸k+1
`

via (136)

8: end for

9: end for

Based on the above ADMM steps, we obtain an EM

and averaging consensus based distributed algorithm as

summarized in Table V. Each node À` stores and updates

two vectors μ` and ¸`. At iteration k=1, each node
initializes a local parameter estimate μ1` and reaches the
consensus on the global variable μ1 via a distributed
averaging consensus algorithm. The local dual variable

is initialized as ¸1` = 0. During the kth iteration, each

node updates the local variable μk+1` via (134), which is

solved by the local EM algorithm as in Table VI because

of the term lnp(Ã` j μ`). Next, each node obtains μk

via a distributed averaging consensus algorithm, and

subsequently, updates its local dual variable ¸k+1i using

(136), which concludes the kth iteration.

In the local EM algorithm, the dual variable ¸` is

partitioned as

¸` =

·
¸Á`

¸p`

¸
(143)

with respect to the components ©` and p
d
` of μ`.

5.4. Determination of the Number of Real Targets

The Bayesian information criterion (BIC) was used

in our previous paper [13] for the Poisson measurement

generation model assumption because this assumption

leads to a cardinality selection problem formulation,

which is similar to the K-means clustering problem and

BIC is one of the widely used and trusted approaches

[25] to determine the number of clusters (the number

of targets in the present paper).

In the present paper, we assume a Bernoulli mea-

surement generation model, which is more realistic than

the Poisson model in the multiple transient emitter lo-

calization problem. Therefore, we used the likelihood

function (binomial, in view of the Bernoulli model)

based thresholding approach to determine the number

of targets.

In the distributed algorithm, the estimated probabil-

ity of detection p̂di will converge to the value in (112) for

n= 10. Assume that the true probability of detection is

high (say, above 0.9) and the number of nodes is large,

we expect that most of the nodes have a measurement

associated with a particular target. Therefore, for a real
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Fig. 2. The probability that a target is detected by at least Sth (3 or 4) sensors for varied values for the number of sensors and the

probability of detection (pd).

TABLE VI

Local EM algorithm at node À` to find μ
k+1
`
.

1: Initialization

μ(0)
`
= μk` (137)

2: for n= 1,2, : : : do until convergence

3: E step

®
(n¡1)
`ji

= p`(·`j = i j z`j ,μ(n¡1)`
) =

p
d(n¡1)
i`

g`i(z`j j Á(n¡1)i`
)PN

i=0
p
d(n¡1)
i`

g`i(z`j j Á(n¡1)i`
)

(138)

Q(μ` j μ(n¡1)`
) =
X
·`

p(·` jÃ`,μ(n¡1)`
) lnp(ÃM` j μ`) =Q(pd` ) +Q(©`)

Q(pd` ) =¡
NX
i=0

pdi`+

mX̀
j=1

NX
i=0

ln(pdi`)®
(n¡1)
`ji

(139)

Q(©`) =

mX̀
j=1

NX
i=0

ln(g`i(z`j j Ái`))®(n¡1)`ji
(140)

4: M step

p
d(n)
`

= argmin
pd
`

¡Q(pd` ) +¸kTp` (pd` ¡pdk) +
½

2
kpd` ¡pdkk22 (141)

©(n)
`
= argmin

©`
¡Q(©`) +¸kTÁ` (©`¡©k) +

½

2
k©`¡©kk22 (142)

5: end for

target estimate, p̂di is likely to end up with a value close

to 1. For a false target estimate, p̂di is likely to end up

with a value close to 0, since only a few nodes have a

measurement associated with a false target (which is the

“same” across sensors, i.e., approximately at the same

location). Based on this difference between real targets
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Fig. 3. A scenario with 10 targets and 4 sensors.

Fig. 4. The graph model of the wireless sensor network in Figure 3.

and false targets, it is reasonable to assume that there

is a threshold value of p̂di that can be used to classify

targets into either real or false.

If the number of sensors is known and the probabil-

ity of detection is also known, then one can calculate

the probability that a target is detected by at least Sth
sensors. Figure 2 plots this probability for a range of

values for the number of sensors and the probability of

detection. Since even at pd=0.7, the probability that a

target is detected by at least 3 sensors is greater than

0.995 in most cases. We use the threshold value Sth=3.

The corresponding threshold value of p̂di is

pdth = 0:3 (144)

when S = 10 as in the simulation study. Therefore, we

classify the targets with p̂di greater than 0.3 as real

targets and otherwise the targets are deemed as false.

6. SIMULATION RESULTS

6.1. Scenario

Assume there are four targets (N = 4). The emission

times of the acoustic events at the target locations are

0.4 s, 0.3 s, 0.1 s and 0.2 s, respectively. The speed

of the acoustic signal is assumed to be 342 m/s. The

measurement noise covariance matrix is

R` =

·
7:6£10¡5 0

0 1£ 10¡4
¸

(145)

i.e., the bearing standard deviation is
p
76 mrad = 0:5±

and the TOA measurement standard deviation amounts

to 10 ms, assumed to be the same for all sensors. The

probability of detection for the targets is assumed to be

0.9 at all sensors. The time windowW is chosen to be 1 s

and the field of view of each sensor is from 0 to ¼. The

density of the false alarms is set to be 1:27 s¡1radian¡1

such that the expected number of false alarms (Nfa) at

TABLE VII

CRLB and MSE with and without TOA measurements.

Bearing Bearing and TOA

CRLB (m2) 2.6655 2.6464

MSE (m2) 2.6396 2.6290

each sensor is 4, which is equal to the number of real

targets. Figure 3 shows one example using a wireless

sensor network with 10 sensors numbered from left to

right in an ascending order, which is represented by

the graph model shown in Figure 4, to localize these 4

targets. Each node has three neighbors.

In the simulation, the targets and the sensors are

located such that the angle between two LOS from two

neighboring targets to any sensor is 5±, which is 10
times the standard deviation of LOS measurement noise,

i.e. there are no unresolved measurements.

6.2. The significance of TOA measurements

The TOA measurements play an important role in

the data association. The ghosting effect using bearing-

only measurements is no longer present due to the

additional estimation of a common signal emission time

for the measurements associated with a single target.

Here, we look at the improved estimation accuracy

provided by the TOA measurements on top of the

bearing-only measurements.

Assume that the data association is known and no

missed detection or false alarms occurs, we want to lo-

calize a single target at the location (8:7 m, 99:6 m)

with all measurements available at a fusion center. Table

VII shows the Cramér-Rao lower bound (CRLB) and

MSE of the target location using bearing-only measure-

ments and bearing with TOA measurements. It shows

that the improvement of the location estimation due to

the additional TOA information is insignificant.

This implies that the TOA information should be

only used in the sequential m-best assignment algorithm

to obtain initial target estimates. Within the local EM

algorithm, we can use only bearing measurements to

reduce computational workload without significantly

degrading the estimation accuracy.

6.3. Performance Metrics

In the following sections, we evaluate our distributed

algorithm by two real-valued metrics for each Monte-

Carlo run instead of averaging over all Monte-Carlo

runs. These two metrics are the cardinality error for

the number of targets and the root mean square (RMS)

position error averaged over all targets. The latter is

obtained by globally associating each location estimate

to the nearest targets.

1) The cardinality error for the number of targets:
Given the true number of targets Nt and the estimated

number of targets N̂, the cardinality error is defined as

Ñ =Nt¡ N̂ (146)
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Fig. 5. The initially estimated number (the truth is 4) of targets by individual sensors, the centralized EM algorithm and the EM and AC

based distributed ADMM algorithm.

2) The RMS position error:
Given the set of true positions of Nt targets

f(x1,y1), (x2,y2), : : : , (xNt ,yNt )g (147)

and the set of estimated positions of N̂ targets

f(x̂1, ŷ1), (x̂2, ŷ2), : : : , (x̂N̂ , ŷN̂)g (148)

there are three cases. Let ¦N denote all permutations of

the set f1,2, : : : ,Ng.
Case 1: Nt = N̂. The RMS position error is defined as

RMSp = min
¼2¦Nt

vuut 1

Nt

NtX
i=1

[(xi¡ x̂¼(i))2 + (yi¡ ŷ¼(i))2]
(149)

Case 2: Nt < N̂. The RMS position error is defined as

RMSp = min
¼2¦

N̂

vuut 1

Nt

NtX
i=1

[(xi¡ x̂¼(i))2 + (yi¡ ŷ¼(i))2]
(150)

Case 3: Nt > N̂. The RMS position error is defined as

RMSp = min
¼2¦Nt

vuut 1

N̂

N̂X
i=1

[(x̂i¡ x¼(i))2 + (ŷi¡ y¼(i))2]
(151)

Note that we need to combine these two real-valued

metrics (146 and one of 149—151) in order to have a

complete evaluation of the algorithm performance.

6.4. Performance of the EM and AC based distributed
ADMM algorithm

For the algorithm evaluation, the target measure-

ments are generated according to a Bernoulli measure-

ment model, specifically, one measurement from each

target is generated for each sensor with a probability pd
or nothing with a probability 1¡pd. The false alarms
are generated for each sensor according to the Poisson

model (80) and (81).

Note that the values of the probability of detection,

pd, and the expected number of false alarms, Nfa, are

required to generate the target measurements. However,

the EM and AC based distributed ADMM algorithm do

not need to know the values of Nfa and pd. They adapt

to these values by “learning them.”

We used 100 Monte-Carlo runs to evaluate the per-

formance of our distributed algorithm and make com-

parisons with a modified version of the centralized al-

gorithm in [13]. Both used the same threshold (144) to

determine the number of targets.

Figure 5 shows the number of targets initially esti-

mated by each sensor using the sequential m-best 2-D

assignment algorithm on the measurements of its own

and its one-hop neighbors. It can be observed that this

number is different from sensor to sensor because of the

missed detections and false alarms, which is the moti-

vation for the development of the distributed set con-

sensus algorithm described in the Sections V-A and V-

B. In the same plot, the centralized algorithm (denoted

by “Centralized”) obtained the initial estimated number

of targets by using the sequential m-best 2-D assign-

ment algorithm on the measurements from all sensors.

In contrast, the distributed algorithm obtained the ini-

tial estimate (the same for all sensors) of the number of

targets via the distributed set consensus algorithm and

this estimate is also the estimated number of candidate

targets. Since the centralized and distributed algorithms
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TABLE VIII

Evolution of each sensor’s target location estimates (each row represents a target location estimate) at key stages of the initialization

consensus process.

consensus on the number of targets consensus on the estimates

sensor

index

initial estimates

by SEQ[m(2-D)]

after 1 iteration after 3 iterations after 1 iteration after 25 iterations

1

"¡5:45 106:09

7:16 94:15

26:82 101:02

# 2664
¡27:05 91:42

¡5:45 106:09

7:16 94:15

26:82 101:02

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡5:45 106:09

7:16 94:15

26:82 101:02

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡5:89 104:59

7:19 94:37

26:03 99:83

¡104:90 ¡21:35

3775
2664
¡25:86 95:19

¡7:83 103:36

8:28 96:08

25:65 98:66

¡104:90 ¡21:35

3775
2

"¡5:45 106:09

7:16 94:15

26:82 101:02

# 2664
¡27:05 91:42

¡5:45 106:09

7:16 94:15

26:82 101:02

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡5:45 106:09

7:16 94:15

26:82 101:02

¡104:90 ¡21:35

3775
2664
¡27:05 91:42

¡5:89 104:59

7:19 94:37

26:03 99:83

¡104:90 ¡21:35

3775
2664
¡25:86 95:19

¡7:83 103:36

8:28 96:08

25:65 98:66

¡104:90 ¡21:35

3775
3

"¡6:05 105:04

6:21 92:11

23:71 96:02

# "¡6:05 105:04

6:21 92:11

23:71 96:02

# 2664
¡27:05 91:42

¡6:05 105:04

6:21 92:11

23:71 96:02

¡104:90 ¡21:35

3775
2664
¡26:72 94:12

¡6:29 104:05

7:04 93:26

25:84 99:59

¡104:90 ¡21:35

3775
2664
¡25:85 95:22

¡7:86 103:37

8:29 96:08

25:64 98:64

¡104:90 ¡21:35

3775
4

2664
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8:24 97:05

26:75 101:26
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8:24 97:05
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8:24 97:05

26:75 101:26

¡104:90 ¡21:35

3775
2664
¡26:72 94:12
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3775
5

"¡8:22 98:99

7:64 92:64

26:01 100:30

# 264¡25:73 102:20

¡8:22 98:99

7:64 92:64

26:01 100:30
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¡25:73 102:20
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8:35 96:10
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6

264¡25:73 102:20
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8:56 110:96
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# 264¡24:83 95:60
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¡10:15 104:22
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¡104:90 ¡21:35
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¡25:73 95:44

¡8:10 103:47

8:41 96:12

25:61 98:52

¡104:90 ¡21:35

3775
9

"¡25:74 97:82

¡12:72 110:89

25:58 96:51

# 264¡25:74 97:82

¡12:72 110:89

10:31 95:76

25:58 96:51

375
2664
¡25:74 97:82

¡12:72 110:89

10:31 95:76

25:58 96:51

¡104:90 ¡21:35
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¡24:56 95:80

¡10:50 106:40

9:64 94:98

25:43 97:39

¡104:90 ¡21:35

3775
2664
¡25:72 95:47

¡8:13 103:49

8:43 96:12

25:61 98:50
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25:58 96:51
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25:58 96:51
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DISTRIBUTED FUSION ALGORITHM FOR PASSIVE LOCALIZATION OF MULTIPLE TRANSIENT EMITTERS 29



Fig. 6. The number of iterations of the distributed set consensus algorithm, the centralized EM algorithm and the EM and AC based

distributed ADMM algorithm.

TABLE IX

Evolution of the target location estimates (same for each sensor)

throughout the distributed EM algorithm.

Initial estimates (final

from initialization

consensus, 60

iterations)

After 2 iterations

(converged)

After removing false

targets2664
¡25:79 95:33

¡7:98 103:42

8:35 96:10

25:63 98:58

¡104:90 ¡21:35

3775
2664
¡25:29 97:01

¡7:56 100:05

8:95 98:45

25:19 98:32

¡104:90 ¡21:35

3775
264¡25:29 97:01

¡7:56 100:05

8:95 98:45

25:19 98:32

375

use different initialization approaches, the initially es-

timated number of targets is different for the two al-

gorithms. False targets appear in 40 runs, where the

estimated number of candidate targets is greater than

the true number of targets. Tables VIII and IX illustrate

the consensus and distributed EM processes.

Figure 6 shows the number of iterations required

for the convergence of the different iterative algorithms

presented in this paper. All the algorithms terminate

in a few iterations. The EM and AC based distributed

algorithm, being itself an iterative algorithm, consists

of three steps, two of which are iterative algorithms

themselves (steps on Lines 5 and 6 in Table V). By

close examination, we found that average number of

iterations for these two algorithms is around 3 and 9,

respectively. Since local communication only occurs at

the AC step (Line 6 in Table V), the average number of

communications for each sensor is approximately 50.

Figure 7 plots the number of targets estimated by

the centralized and distributed algorithms before and

after thresholding. Since the initialization is different

for these two EM algorithms, the estimated number of

targets is slightly different. In the shooter localization

application, the priority is to avoid any missed target and

then try to avoid as many false targets as possible. There

are two possible sources for the false targets in the final

solution. One is that the false alarm rate is high, which

can inevitably cause the presence of some false targets.

The other is that a target is split into two close targets

due to the association test. While the former may cause

confusion in the decision making, we may prioritize the

targets based on the estimated pd such that the low p̂d

targets have the low priority. The latter may be solved by

looking at whether two close targets with low estimated

probabilities of detection have their sum close to 1.

The top plot in Figure 8 shows the RMS position er-

ror (averaged over all targets) for different cases before

we remove the predicted false targets. The “Known As-

sociation,” which refers to the situation when we know

the number of targets and the association between mea-

surements and targets, is meant to serve as a baseline

or a lower bound (which is unachievable). In this case,

the position estimates can be obtained separately for

each target by solving a nonlinear least squares prob-

lem, and subsequently the position error can easily be

obtained. From the same plot, it can be observed that

the distributed algorithm yields the same position error

as the centralized algorithm most of the time. While the

baseline serves as a lower bound in most cases, it is in-

teresting to note that the performance of the centralized

algorithm or the distributed algorithm is better than the

baseline in a few situations, which is due to “useful”

false measurements.

The bottom plot in Figure 8 shows the RMS posi-

tion error (averaged over all targets) for different cases
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Fig. 7. The number of targets (the truth is 4) estimated by the centralized and distributed algorithms before (top plot) and after (bottom

plot) removing false targets using the threshold (144).

Fig. 8. The RMS position error per target evaluated by assuming known target-measurement association, using the centralized EM

algorithm and the EM and AC based distributed ADMM algorithm before and after removing the false targets.

after we remove the low p̂d false targets. This is also

a measure of accuracy of the final position estimates

provided by the centralized and distributed algorithm.

For a clearer comparison, the range of the RMS ratio of

the distributed algorithm over the centralized algorithm

is also shown as in Table X. While the distributed al-

gorithm can produce a higher error than the centralized

algorithm occasionally, in most cases (84%), it yields

practically the same localization result as the centralized

algorithm. It is interesting to note that the distributed

algorithm can be slightly better than the centralized al-

gorithm due to a different initialization.

7. CONCLUSION

This paper considers passive localization of multi-

ple transient emitters using a wireless sensor network

and develops a distributed algorithm, which relies solely

on local communications between one-hop neighboring
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TABLE X

The final (after removing low pd targets) RMS ratio among assuming known association (KA), the centralized algorithm (C) and the

distributed algorithm (D).

Interval (0:9,0:99) [0:99,1:01] (1:01,1:1) [1:1,1:3) [1:3,1:5) [1:5,8]

D versus C 3 84 3 6 1 3

C versus KA 12 75 3 4 2 2

D versus KA 15 60 6 9 6 4

sensors. A distributed implementation of the centralized

EM based algorithm is not possible unless the consen-

sus on the initial set of estimates can be reached among

all sensors. It is shown by simulation that even with

the knowledge of data association, we need to carry out

the initialization carefully because of the bearing mea-

surements. Random initializations based on individual

sets of bearing measurements could converge to a local

minimum, therefore it is necessary to use the bearing

measurements from neighboring sensors. As in the cen-

tralized EM based algorithm, each node uses a sequen-

tial m-best 2-D assignment algorithm on measurements

from itself and its neighbors to obtain an initial set of

target estimates.

Since initially estimated target set can be different

from node to node in terms of both the cardinality (this

happens when the probability of detection is low or the

false alarm rate is high) and the values of estimates

(since each sensor uses different measurements for ini-

tialization), we developed a distributed set consensus

algorithm to reach consensus on the number of candi-

date targets before each node can reach consensus on

the target-estimate association so that a proper initial-

ization is obtained for the EM and AC based distributed

ADMM algorithm. Since a Bernoulli measurement gen-

eration model is a more realistic assumption as it reflects

best the physical process of measurement generation,

we presented a likelihood function based thresholding

technique to determine the number of targets.

Simulation results show that the EM and AC based

distributed ADMM algorithm converges very fast and

yields the target location estimates that are almost as

good as those of the centralized algorithm. The esti-

mated probability of detection is shown to be able to

effectively distinguish real targets from false targets.
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